Bacterial interspersed mosaic elements (BIMEs) are a major source of sequence polymorphism in Escherichia coli intergenic regions including specific associations with a new insertion sequence.
نویسندگان
چکیده
A significant fraction of Escherichia coli intergenic DNA sequences is composed of two families of repeated bacterial interspersed mosaic elements (BIME-1 and BIME-2). In this study, we determined the sequence organization of six intergenic regions in 51 E. coli and Shigella natural isolates. Each region contains a BIME in E. coli K-12. We found that multiple sequence variations are located within or near these BIMEs in the different bacteria. Events included excisions of a whole BIME-1, expansion/deletion within a BIME-2 and insertions of non-BIME sequences like the boxC repeat or a new IS element, named IS 1397. Remarkably, 14 out of IS 1397 integration sites correspond to a BIME sequence, strongly suggesting that this IS element is specifically associated with BIMEs, and thus inserts only in extragenic regions. Unlike BIMEs, IS 1397 is not detected in all E. coli isolates. Possible relationships between the presence of this IS element and the evolution of BIMEs are discussed.
منابع مشابه
The Origin and Possible Functional Role of Short Dispersed Repeats
Repetitive sequences are common not only in eukaryotic genomes but also in prokaryotic genomes. Bacterial genomes contain many types of repeats including tandem repeats and short dispersed repeats. This research aims to expand our understanding of short dispersed repeats (SDR), a novel type of repetitive sequences in cyanobacterial genomes. SDR are found in the genomes of Nostoc punctiforme as ...
متن کاملTransposition of IS1397 in the family Enterobacteriaceae and first characterization of ISKpn1, a new insertion sequence associated with Klebsiella pneumoniae palindromic units.
IS1397 and ISKpn1 are IS3 family members which are specifically inserted into the loop of palindromic units (PUs). IS1397 is shown to transpose into PUs with sequences close or identical to the Escherichia coli consensus, even in other enterobacteria (Salmonella enterica serovar Typhimurium, Klebsiella pneumoniae, and Klebsiella oxytoca). Moreover, we show that homologous intergenic regions con...
متن کاملNoncoding RNAs binding to the nucleoid protein HU in Escherichia coli.
Some unidentified RNA molecules, together with the nucleoid protein HU, were suggested to be involved in the nucleoid structure of Escherichia coli. HU is a conserved protein known for its role in binding to DNA and maintaining negative supercoils in the latter. HU also binds to a few RNAs, but the full spectrum of its binding targets in the cell is not known. To understand any interaction of H...
متن کاملThe evolution of insertion sequences within enteric bacteria.
To identify mechanisms that influence the evolution of bacterial transposons, DNA sequence variation was evaluated among homologs of insertion sequences IS1, IS3 and IS30 from natural strains of Escherichia coli and related enteric bacteria. The nucleotide sequences within each class of IS were highly conserved among E. coli strains, over 99.7% similar to a consensus sequence. When compared to ...
متن کاملThe decay of the chromosomally encoded ccdO157 toxin-antitoxin system in the Escherichia coli species.
The origin and the evolution of toxin-antitoxin (TA) systems remain to be uncovered. TA systems are abundant in bacterial chromosomes and are thought to be part of the flexible genome that originates from horizontal gene transfer. To gain insight into TA system evolution, we analyzed the distribution of the chromosomally encoded ccdO157 system in 395 natural isolates of Escherichia coli. It was...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 145 3 شماره
صفحات -
تاریخ انتشار 1997